AI Strategy and Concepts Bibliography

List Resources

Displaying 1 - 20 of 1453 (Bibliography: WIKINDX Master Bibliography)
Parameters
List all
Order by:

Ascending
Descending
Use all checked: 
Use all displayed: 
Use all in list: 
Szabadf"oldi, I. (2021). Artificial intelligence in military application--opportunities and challenges. Land Forces Academy Review, 26(2), 157–165.  
Last edited by: SijanLibrarian 2023-02-03 09:59:28 Pop. 0%
Lempert, R. J. (2019). Robust decision making (rdm). In Decision making under deep uncertainty (pp. 23–51).Springer, Cham.  
Last edited by: SijanLibrarian 2023-01-17 14:27:14 Pop. 0%
Still, S., & Precup, D. (2012). An information-theoretic approach to curiosity-driven reinforcement learning. Theory in Biosciences, 131(3), 139–148.  
Last edited by: SijanLibrarian 2023-01-18 06:35:35 Pop. 0%
Lecun, Y. (2022). A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open Review, 62,  
Last edited by: SijanLibrarian 2023-01-18 12:42:29 Pop. 0%
Bengio, Y., Lecun, Y., & Hinton, G. (2021). Deep learning for ai. Communications of the ACM, 64(7), 58–65.  
Last edited by: SijanLibrarian 2023-01-18 12:34:59 Pop. 0%
Yin, M., Wortman Vaughan, J., & Wallach, H. 2019, Understanding the effect of accuracy on trust in machine learning models. Paper presented at Proceedings of the 2019 chi conference on human factors in computing systems.  
Last edited by: SijanLibrarian 2022-11-15 13:01:10 Pop. 0%
Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: Review of empirical research. Academy of Management Annals, 14(2), 627–660.  
Last edited by: SijanLibrarian 2022-11-16 13:46:37 Pop. 0%
Broussard, M. (2018). Artificial unintelligence: How computers misunderstand the world. MIT Press.  
Last edited by: SijanLibrarian 2022-11-16 12:17:16 Pop. 0%
Singh, J., Cobbe, J., & Norval, C. (2018). Decision provenance: Harnessing data flow for accountable systems. IEEE Access, 7, 6562–6574.  
Last edited by: SijanLibrarian 2022-12-06 09:03:46 Pop. 0%
Komiak, S. Y., & Benbasat, I. (2006). The effects of personalization and familiarity on trust and adoption of recommendation agents. MIS quarterly, 941–960.  
Last edited by: SijanLibrarian 2022-11-18 12:49:14 Pop. 0%
Oudeyer, P.-Y. (2018). Computational theories of curiosity-driven learning. arXiv preprint arXiv:1802.10546,  
Last edited by: SijanLibrarian 2023-01-03 10:17:54 Pop. 0%
Raj, M., & Seamans, R. (2019). Primer on artificial intelligence and robotics. Journal of Organization Design, 8(1), 1–14.  
Last edited by: SijanLibrarian 2022-11-16 15:43:25 Pop. 0%
Gadepally, V. N., Hancock, B. J., Greenfield, K. B., Campbell, J. P., Campbell, W. M., & Reuther, A. I. (2016). Recommender systems for the department of defense and intelligence community. Lincoln Laboratory Journal, 22(1), 74–89.  
Last edited by: SijanLibrarian 2022-12-11 13:33:37 Pop. 0%
Barton, M. (2021). The department of defense high performance computing modernization program. The Journal of Defense Modeling and Simulation, 15485129211061743.  
Last edited by: SijanLibrarian 2022-12-11 12:53:39 Pop. 0%
Graesser, A. C., & McNamara, D. S. (2011). Computational analyses of multilevel discourse comprehension. Topics in cognitive science, 3(2), 371–398.  
Last edited by: SijanLibrarian 2022-10-21 17:01:11 Pop. 0%
Yu, K., Berkovsky, S., Taib, R., Zhou, J., & Chen, F. 2019, Do i trust my machine teammate? an investigation from perception to decision. Paper presented at Proceedings of the 24th International Conference on Intelligent User Interfaces.  
Last edited by: SijanLibrarian 2022-11-15 13:07:14 Pop. 0%
Li, B., Pei, Y., Wu, H., & Shen, B. (2015). Heuristics to allocate high-performance cloudlets for computation offloading in mobile ad hoc clouds. The Journal of Supercomputing, 71(8), 3009–3036.  
Last edited by: SijanLibrarian 2022-12-12 09:50:32 Pop. 0%
Lewis, P. R., Marsh, S., & Pitt, J. (2021). Ai vs “ai”: Synthetic minds or speech acts. IEEE Technology and Society Magazine, 40(2), 6–13.  
Last edited by: SijanLibrarian 2022-11-15 16:13:35 Pop. 0%
Younge, A. J. (2018). Supporting high performance analytics with system software for virtualized supercomputing. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).  
Last edited by: SijanLibrarian 2022-12-11 12:03:52 Pop. 0%
Xu, S., Rogers, T., Fairweather, E., Glenn, A., Curran, J., & Curcin, V. (2018). Application of data provenance in healthcare analytics software: Information visualisation of user activities. AMIA Summits on Translational Science Proceedings, 2018, 263.  
Last edited by: SijanLibrarian 2022-12-06 09:35:19 Pop. 0%
1 - 20  |  21 - 40  |  41 - 60  |  61 - 80  |  81 - 100  |  101 - 120  |  121 - 140  |  141 - 160  |  161 - 180  |  181 - 200  |  End
wikindx 6.2.2 ©2003-2020 | Total resources: 1453 | Username: -- | Bibliography: WIKINDX Master Bibliography | Style: American Psychological Association (APA) | Database queries: 24 | DB execution: 0.19836 secs | Script execution: 0.21139 secs