List Resources

Displaying 1 - 20 of 117
Order by:

Use all checked: 
Use all displayed: 
Use all in list: 
Abderhalden, N. (2022). risk hindered decision making: how the dod’s faulty understanding of risk jeopardizes its strategy. The Strategy Bridge.  
5/29/22, 9:05 AM
Acton, J. M. (2018). Escalation through entanglement: How the vulnerability of command-and-control systems raises the risks of an inadvertent nuclear war. International Security, 43(1), 56–99.  
11/23/21, 1:56 PM
Albino, D. K., Friedman, K., Bar-Yam, Y., & Glenney IV, W. G. (2016). Military strategy in a complex world. arXiv preprint arXiv:1602.05670.  
1/7/22, 12:29 PM
Alkire, B., Hanser, L. M., & Lingel, S. L. (2018). A wargame method for assessing risk and resilience of military command-and-control organizations. Rand.  
11/22/21, 2:35 PM
Alkire, B., LINGEL, S., Baxter, C., Carson, C. M., Chen, C., & Gordon, D., et al.. (2018). Command and control of joint air operations in the pacific: Methods for comparing and contrasting alternative concepts RAND PROJECT AIR FORCE SANTA MONICA CA SANTA MONICA United States.  
11/22/21, 2:30 PM
Amir, O., Grosz, B. J., Gajos, K. Z., & Gultchin, L. (2019). Personalized change awareness: Reducing information overload in loosely-coupled teamwork. Artificial Intelligence, 275, 204–233.  
9/14/21, 4:04 PM
Amoroso, D., Frank, S., Noel, S., Lucy, S., & Guglielmo, T. (2018). Autonomy in weapon systems: The military application of artificial intelligence as a litmus test for germany’s new foreign and security policy. Autonomy in Weapon Systems.  
7/2/20, 11:33 AM
Angle, D. W. (1998). Air force and army digitization and the joint targeting process for time-critical targets ARMY COMMAND AND GENERAL STAFF COLL FORT LEAVENWORTH KS SCHOOL OF ADVANCED~….  
12/15/20, 10:03 AM
Barton, M. (2021). The department of defense high performance computing modernization program. The Journal of Defense Modeling and Simulation, 15485129211061743.  
12/11/22, 12:53 PM
Beckett, G. P. (2020). Leveraging artificial intelligence and automatic target recognition to accelerate deliberate targeting AIR WAR COLL MAXWELL AFB AL MAXWELL AFB United States.  
4/6/21, 12:23 PM
Best, C., Galanis, G., Sottilare, R., Kerry, J., Harris, P. D., & Salas, E., et al.. (2013). Fundamental issues in defense training and simulation. Ashgate Publishing Limited.  
6/25/20, 10:06 AM
Blessman, D. (2020). Jado for 2035 AIR UNIV MAXWELL AFB AL MAXWELL AFB United States.  
12/8/20, 12:34 PM
Board, D. I. (2019). Ai principles: Recommendations on the ethical use of artificial intelligence by the department of defense. Supporting document, Defense Innovation Board.  
7/2/20, 12:40 PM
Booker, C. M. (2013). First-strike advantage: The united states' counter to china's preemptive integrated network electronic warfare strategy AIR UNIV MAXWELL AFB AL SCHOOL OF ADVANCED AIR AND SPACE STUDIES.  
8/17/21, 10:12 AM
Bracken, P. (2006). Net assessment: A practical guide. The US Army War College Quarterly: Parameters, 36(1), 1.  
9/26/22, 10:49 AM
Brown, M. W. (2020). Developing readiness to trust artificial intelligence within warfighting teams. Military Review, 100(1), 36–44.  
7/1/20, 11:28 AM
Burns, G. R., Collier, R. T., Cornish, R. J., Curley, K. J., Freeman, A., & Spears, J. (2021). Evaluating artificial intelligence methods for use in kill chain functions. Unpublished PhD thesis, Monterey, CA; Naval Postgraduate School.  
5/2/22, 10:29 AM
Cancian, M. F. (2020). Us military forces in fy 2021. JSTOR.  
5/18/21, 3:43 PM
Cirincione, G., & Verma, D. 2019, Federated machine learning for multi-domain operations at the tactical edge. Paper presented at Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications.  
1/12/21, 1:27 PM
Cohen, E. A. (2005). The historical mind and military strategy. Orbis, 49(4), 575–588.  
9/26/22, 11:02 AM
1 - 20  |  21 - 40  |  41 - 60  |  61 - 80  |  81 - 100  |  101 - 117
WIKINDX 6.7.0 | Total resources: 1539 | Username: -- | Bibliography: WIKINDX Master Bibliography | Style: American Psychological Association (APA)