List Resources

Displaying 1 - 20 of 36
Order by:

Use all checked: 
Use all displayed: 
Use all in list: 
Aggarwal, A., Chauhan, A., Kumar, D., Mittal, M., & Verma, S. (2020). Classification of fake news by fine-tuning deep bidirectional transformers based language model. EAI Endorsed Transactions on Scalable Information Systems Online First; EAI: Ghent, Belgium.  
10/28/20, 1:54 PM
Allen, C., Balavzevi'c, I., & Hospedales, T. (2020). A probabilistic framework for discriminative and neuro-symbolic semi-supervised learning. arXiv preprint arXiv:2006.05896.  
11/26/20, 3:01 AM
Balakrishnan, A. (2021). Productizing an artificial intelligence solution for intelligent detail extraction—synergy of symbolic and sub-symbolic artificial intelligence techniques. Trends of Data Science and Applications: Theory and Practices, 954, 23.  
1/24/22, 12:39 PM
Barnden, J. A., & Lee, M. G. (2001). Metaphor and artificial intelligence. Lawrence Erlbaum Associates.  
9/20/21, 12:59 PM
Bender, E. A. (1996). Mathematical methods in artificial intelligence. IEEE Computer Society Press.  
1/25/22, 10:26 AM
Bentley, M. J. (2017). Enabling air force satellite ground system automation through software engineering AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT-PATTERSON AFB OH WRIGHT-PATTERSON~….  
7/8/22, 9:46 AM
Chen, B., Wu, H., Mo, W., Chattopadhyay, I., & Lipson, H. 2018, Autostacker: A compositional evolutionary learning system. Paper presented at Proceedings of the Genetic and Evolutionary Computation Conference.  
11/26/20, 2:24 AM
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.  
10/28/20, 4:47 PM
Du, K. L., & Swamy, M. N. S. (2019). Neural networks and statistical learning. Springer London.  
7/9/20, 10:26 AM
Fugate, S., & Ferguson-Walter, K. (2019). Artificial intelligence and game theory models for defending critical networks with cyber deception. AI Magazine, 40(1), 49–62.  
10/28/20, 1:50 PM
Habib, N. (2019). Hands-on q-learning with python: Practical q-learning with openai gym, keras, and tensorflow. Packt Publishing.  
7/9/20, 10:32 AM
Heilmeier, A., Thomaser, A., Graf, M., & Betz, J. (2020). Virtual strategy engineer: Using artificial neural networks for making race strategy decisions in circuit motorsport. Applied Sciences, 10(21), 7805.  
3/29/21, 4:44 PM
Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., & Piot, B., et al.. 2018, Deep q-learning from demonstrations. Paper presented at Thirty-Second AAAI Conference on Artificial Intelligence.  
7/9/20, 10:13 AM
Inala, J. P., Yang, Y., Paulos, J., Pu, Y., Bastani, O., & Kumar, V., et al.. (2020). Neurosymbolic transformers for multi-agent communication. Advances in Neural Information Processing Systems, 33.  
11/26/20, 2:44 AM
Jiang, J., & Ahn, S. (2020). Generative neurosymbolic machines. Advances in Neural Information Processing Systems, 33.  
11/26/20, 2:41 AM
Lake, B. M., Salakhutdinov, R. R., & Tenenbaum, J. 2013, One-shot learning by inverting a compositional causal process. Paper presented at Advances in Neural Information Processing Systems.  
11/26/20, 2:28 AM
Lempert, R. J. (2019). Robust decision making (rdm). In Decision making under deep uncertainty (pp. 23–51). Springer, Cham.  
1/17/23, 2:27 PM
Madni, A. M., & Madni, C. C. (2018). Architectural framework for exploring adaptive human-machine teaming options in simulated dynamic environments. Systems, 6(4), 44.  
5/18/21, 3:36 PM
Marra, G., Dumanvci'c, S., Manhaeve, R., & De Raedt, L. (2021). From statistical relational to neural symbolic artificial intelligence: A survey. arXiv preprint arXiv:2108.11451.  
1/24/22, 12:55 PM
McWhorter, T., Morys, M., Severyn, S., Stevens, S., Chan, L., & Cheng, C.-H. (2021). Machine learning aided electronic warfare system. IEEE Access, 9, 94691–94699.  
11/8/21, 4:24 PM
1 - 20  |  21 - 36
WIKINDX 6.7.0 | Total resources: 1470 | Username: -- | Bibliography: WIKINDX Master Bibliography | Style: American Psychological Association (APA)