AI Strategy and Concepts Bibliography

WIKINDX Resources

Willis, L. E. (2020). Deception by design. Harvard Journal of Law & Technology, 34(1), 115–190. 
Added by: SijanLibrarian (2022-07-05 12:36:14)   Last edited by: SijanLibrarian (2022-07-05 12:39:06)
Resource type: Journal Article
BibTeX citation key: Willis2020
Email resource to friend
View all bibliographic details
Categories: Artificial Intelligence, Cognitive Science, Data Sciences, Decision Theory, Ethics, General, Law
Subcategories: Behavioral analytics, Big data, Decision making, Game theory, Human decisionmaking, Machine learning, Psychology of human-AI interaction
Creators: Willis
Collection: Harvard Journal of Law & Technology
Views: 15/15
Views index: 26%
Popularity index: 6.5%
Abstract
Big data, ubiquitous tracking, and machine learning and other types of artificial intelligence increasingly shape business interactions with consumers. Through algorithms, businesses employ these tools to design advertising, sales portals, returnand cancellation processes, pricing, and even products and services themselves. Ultimately, these algorithms are programmed to optimizeprofit. At the same time, digital interfaces can exploit features of the online environment to manipulate and deceive, a phenomenon so common that the term dark patternshas been coined for it.Although dark patterns can be intentionally programmed, todays machine learning systems can teach themselves to deceive people even when humans have not designed themto do so. One of this Articles insights is that when deception of consumers is profitable, business communications and conduct designed by algorithms optimized only for profit will inevitably engage in deception.
  
wikindx 6.2.2 ©2003-2020 | Total resources: 1373 | Username: -- | Bibliography: WIKINDX Master Bibliography | Style: American Psychological Association (APA) | Database queries: 58 | DB execution: 0.11337 secs | Script execution: 0.12794 secs