Mikkilineni, R. (2020). Convergence of natural intelligence and artificial intelligence. In Theoretical Information Studies: Information In The World (pp. 391–415). World Scientific. |
|
19/03/2024, 11:56 |
|
Wenskovitch, J., Fallon, C., Miller, K., & Dasgupta, A. 2021, Beyond visual analytics: Human-machine teaming for ai-driven data sensemaking. Paper presented at 2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). |
|
18/03/2024, 23:37 |
|
Zebrowski, R. L., & McGraw, E. B. (2021). Autonomy and openness in human and machine systems: Participatory sense-making and artificial minds. Journal of Artificial Intelligence and Consciousness, 8(2), 303–323. |
|
18/03/2024, 22:57 |
|
Dawid, A., & Lecun, Y. (2023). Introduction to latent variable energy-based models: A path towards autonomous machine intelligence. arXiv preprint arXiv:2306.02572. |
|
18/03/2024, 22:50 |
|
Kotseruba, I., & Tsotsos, J. K. (2020). 40 years of cognitive architectures: Core cognitive abilities and practical applications. Artificial Intelligence Review, 53(1), 17–94. |
|
18/03/2024, 22:06 |
|
Wrbouschek, M., & Slunecko, T. (2021). Liminal moods and sense-making under conditions of uncertainty. International Review of Theoretical Psychologies, 1(1), 142–161. |
|
18/03/2024, 21:42 |
|
Stenner, P. (2018). Liminality and experience: A transdisciplinary approach to the psychosocial. Springer. |
|
18/03/2024, 21:36 |
|
Brockmeier, J. (2009). Reaching for meaning: Human agency and the narrative imagination. Theory & Psychology, 19(2), 213–233. |
|
18/03/2024, 21:31 |
|
Picione, R. D. L., & Valsiner, J. (2017). Psychological functions of semiotic borders in sense-making: Liminality of narrative processes. Europe's journal of psychology, 13(3), 532. |
|
18/03/2024, 21:14 |
|
De Luca Picione, R. (2021). The dynamic nature of the human psyche and its three tenets: Normativity, liminality and resistance—semiotic advances in direction of modal articulation sensemaking. Human Arenas, 4(2), 279–293. |
|
17/03/2024, 19:29 |
|
De Luca Picione, R., & Freda, M. F. (2016). Borders and modal articulations. semiotic constructs of sensemaking processes enabling a fecund dialogue between cultural psychology and clinical psychology. Integrative psychological and behavioral science, 50, 29–43. |
|
17/03/2024, 19:24 |
|
Arora, S., & Doshi, P. (2021). A survey of inverse reinforcement learning: Challenges, methods and progress. Artificial Intelligence, 297, 103500. |
|
19/02/2024, 21:45 |
|
C'ardenas-Garc'ia, J. F. (2023). Info-autopoiesis and the limits of artificial general intelligence. Computers, 12(5), 102. |
|
19/02/2024, 21:14 |
|
Varela, F. G., Maturana, H. R., & Uribe, R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. Biosystems, 5(4), 187–196. |
|
19/02/2024, 20:53 |
|
Bianchini, F. (2023). Autopoiesis of the artificial: From systems to cognition. Biosystems, 104936. |
|
19/02/2024, 20:46 |
|
Wiesm"uller, S. (2023). A theoretical approximation to artificial intelligence as an autopoietic system. The Relational Governance of Artificial Intelligence: Forms and Interactions, 25–90. |
|
19/02/2024, 20:36 |
|
Zadeh, L. A. (1988). Fuzzy logic. Computer, 21(4), 83–93. |
|
19/02/2024, 19:34 |
|
Kahn, G., Villaflor, A., Pong, V., Abbeel, P., & Levine, S. (2017). Uncertainty-aware reinforcement learning for collision avoidance. arXiv preprint arXiv:1702.01182. |
|
19/02/2024, 15:20 |
|
Abbeel, P., Coates, A., Quigley, M., & Ng, A. (2006). An application of reinforcement learning to aerobatic helicopter flight. Advances in Neural Information Processing Systems, 19. |
|
19/02/2024, 15:11 |
|
Punjani, A., & Abbeel, P. 2015, Deep learning helicopter dynamics models. Paper presented at 2015 IEEE International Conference on Robotics and Automation (ICRA). |
|
19/02/2024, 14:54 |
|